Developed by Utilizing Core Technologies (Gravure Printing, Lamination, and Coating) accumulated as World’s Largest Comprehensive Printing Company, Each of 9 high quality cover tape products in our lineup is suitable for Electronic Components and Electronic Devices.

Application

Cover Tape for Embossed Carrier Tape to be used for Transportation of Electronic Devices

Features

- **a. Stable Peeling Strength**
 - Sealable in wide temperature range
 - Less change of Peeling Strength by aging
 - Applicable to High Speed Mounting

- **b. Applicable to Multiple Types of Carrier Tape Materials**
 - Can be used with multiple carrier tapes; PS, PC, and APET.

- **c. Stable Conductivity**
 - Stable Conductivity in low temperature environment.

Manufacturing Capacity / Environment

High Productivity, Stable Product Performance, and Safety.
- All DNP Cover Tapes are manufactured in the largest film converting plant in DNP Group that also manufactures packages for food and medical products.

Capability of Analysing and Measurering

Equipped Measurement Tools
- Peeling Strength / Peeling-Charged Eletrostatic potential /
- Surface Resistance / Haze / Transmittance

DNP R&D Center enables Highly Accurate Analysis at the atomic level.
DNP Cover Tape Lineup

1. LT-6P25 • Normal Type / Suitable for PP Carrier / High Transparency
2. C-300 • Anti-Static Type / Suitable for PP Carrier / High Transparency
3. C-800 • Conductive Type / Suitable for PS Carrier / Low Temp Seal ability / Peeling Strength Stability / High Transparency
4. F4DR • Conductive Type / Applicable for Multiple Carrier (PS, PC, A-PET) / Transparency
5. F4DK • Conductive Type / Suitable for PS & PC Carrier / High Transparency
6. FIT-D • Conductive Type / Suitable for PS & PC Carrier / Ultra Transparency
7. F4IZ • Anti-Static Type / Suitable for PS Carrier / High Transparency
8. F4DR SP • Conductive Type / Applicable for Multiple Carrier (PS, PC, A-PET) / Ultra Transparency
9. F4DK SP • Conductive Type / Applicable for multiple Carrier (PS, PC, A-PET) / Ultra Transparency
Layer Structure

- **C-800**
 - Anti-Static PET (16um)
 - Inner PE Layer (35um)
 - Conductive Heat Seal layer (1um)
 - 52 um

- **F4DR**
 - Anti-Static PET (12um)
 - Inner PE Layer (30um)
 - Conductive Heat Seal Layer (1um)
 - 48 um

- **F4DK**
 - Anti-Static PET (12um)
 - Inner PE Layer (30um)
 - Conductive Heat seal layer (1um)
 - 48 um

- **FIT-D**
 - Anti-Static PET (30mic)
 - Inner PE Layer (30um)
 - Conductive Heat seal layer (1um)
 - 48 um
Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Measurement Unit</th>
<th>Measurement Standard /Method</th>
<th>C-800</th>
<th>F4DR</th>
<th>F4DK</th>
<th>FIT-D</th>
<th>F4IZ</th>
<th>F4DR SP</th>
<th>F4DK SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>mm</td>
<td>Micrometer Gauge</td>
<td>0.052</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.046</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>MPa</td>
<td>JIS K7127</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Elongation</td>
<td>%</td>
<td>JIS K7127</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Haze</td>
<td>%</td>
<td>JIS K7105</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Surface Resistance</td>
<td>PET Ohm/Sq.</td>
<td>JIS K6911</td>
<td>10^{9-11}</td>
<td>10^{9-11}</td>
<td>10^{9-11}</td>
<td>10^{9-11}</td>
<td>10^{10-11}</td>
<td>10^{9-11}</td>
<td>10^{9-11}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sealant</td>
<td>10^{8-9}</td>
<td>10^{7-8}</td>
<td>10^{7-8}</td>
<td>10^{7-8}</td>
<td>10^{9-10}</td>
<td>10^{7-8}</td>
<td>10^{7-8}</td>
</tr>
</tbody>
</table>

The properties above are just typical and representative values measured at DNP and are not to be guaranteed.